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Copernicus (1473-1543) proposed a definitive
model in which the planets moved in circles
around a fixed central sun.  His theory was
discredited by the church, but notable amongst
its supporters was Galileo who had to face
prosecution from the state for his beliefs.

It was around the same time as Galileo, a
nobleman called Tycho Brahe (1546-1601)
hailing from Denmark, spent his entire lifetime
recording observations of the planets with the
naked eye.  His compiled data were analysed
later by his assistant Johannes Kepler (1571-
1640). He could extract from the data three
elegant laws that now go by the name of Kepler’s
laws.  These laws were known to Newton and
enabled him to make a great scientific leap in
proposing his universal law of gravitation.

8.2  KEPLER’S LAWS

The three laws of Kepler can be stated as follows:
1.  Law of orbits : All planets move in elliptical
orbits with the Sun situated at one of the  foci

Fig. 8.1(a) An ellipse traced out by a planet around

the sun. The closest point is P and the

farthest point is A, P is called the

perihelion and A the aphelion. The

semimajor axis is half the distance AP.

Fig. 8.1(b) Drawing an ellipse. A string has its ends

fixed at F
1
 and F

2
. The tip of a pencil holds

the string taut and is moved around.

of the ellipse (Fig. 8.1a). This law was a  deviation
from the Copernican model which allowed only
circular orbits. The ellipse, of which the circle is
a special case, is a closed curve which can be
drawn very simply as follows.

Select two points F
1
 and F

2
.  Take a length

of a string and  fix its ends at F
1
 and F

2
 by pins.

With the tip of a pencil  stretch the string taut
and then draw a curve by moving the pencil
keeping the string taut throughout.(Fig. 8.1(b))
The closed curve you get is called an ellipse.
Clearly for any point T on the ellipse, the sum of
the distances from F

1
 and F

2
 is a constant.  F

1
,

F
2
 are called the focii. Join the points F

1 
and F

2

and extend 
  
the line to intersect the ellipse at

points P and A as shown in Fig. 8.1(b). The
midpoint of the line PA is the centre of the ellipse
O and the length PO = AO  is called the semi-
major axis of the ellipse. For a circle, the two
focii  merge into one  and the semi-major axis
becomes the radius of the circle.
2. Law of areas : The line that joins any planet
to the sun sweeps  equal areas in equal intervals
of time (Fig. 8.2).  This law comes from the
observations that planets appear to move slower
when they are  farther from the sun than when
they are nearer.

Fig. 8.2 The planet P moves around the sun in an

elliptical orbit. The shaded area is the area

∆A swept out in a small interval of time  ∆t.

3. Law of periods : The square of the time period

of revolution of a planet is proportional to the

cube of the semi-major axis of the ellipse traced

out by  the planet.

Table 8.1 gives the approximate time periods

of revolution of eight* planets around the sun

along with values of their semi-major axes.

* Refer to information given in the Box on Page 182
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

Table 8.1 Data from measurement of
planetary motions given below
confirm Kepler’s Law of Periods

(a ≡ Semi-major  axis in units of  1010 m.
T ≡ Time period of revolution of the planet

in years(y).
Q ≡ The quotient ( T2/a3  ) in units of

10 -34 y2 m-3.)

Planet a T Q

Mercury 5.79 0.24 2.95
Venus 10.8 0.615 3.00
Earth 15.0 1 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84 2.98
Neptune 450 165 2.99

Pluto* 590 248 2.99

The law of areas can be understood as a
consequence of  conservation of angular
momentum whch is valid for any central force .
A central force is such that  the force on the
planet is along the vector joining the Sun and
the planet. Let the Sun be at the origin and let
the position and momentum of the planet be
denoted by r and p  respectively. Then the area
swept out by the planet of mass m in time

interval ∆t is (Fig. 8.2) ∆A given by

∆A  = ½  (r × v∆t) (8.1)

 Hence

∆A /∆t   =½ (r × p)/m, (since  v = p/m)

                       =    L / (2 m) (8.2)
where v is the velocity,  L is the angular

momentum equal  to   ( r  ×  p).  For a central
force, which is directed along r, L is  a constant

as the planet goes around. Hence,  ∆ A /∆t is a

constant according to the last equation. This is
the law of areas. Gravitation is a central force
and hence the law of areas follows.

Example 8.1  Let  the speed of the planet
at  the  perihelion P in Fig. 8.1(a) be vP  and
the Sun-planet distance SP be rP. Relate
{rP, vP} to the corresponding quantities at
the aphelion {rA, vA}. Will the planet take
equal times to traverse BAC and CPB ?

Answer  The magnitude of the angular

momentum at P is Lp =  mp rp vp, since inspection

tells us that rp and vp are mutually

perpendicular. Similarly, LA = mp rA vA. From

angular momentum conservation
mp rp vp = mp rA vA

or

v

v

p

A

=
r

r

A

p


Since rA   > rp, vp > vA .

The area SBAC bounded by the ellipse and

the radius vectors SB and SC is larger than SBPC

in Fig. 8.1. From Kepler’s second law, equal areas

are swept in equal times. Hence the planet will

take a longer time to traverse BAC than CPB.

8.3  UNIVERSAL LAW OF GRAVITATION

Legend has it that observing an apple falling
from a tree, Newton was inspired to arrive at an
universal law of gravitation that led to an
explanation of terrestrial  gravitation as well as
of Kepler’s laws.  Newton’s reasoning was that
the moon revolving in an orbit of radius R

m
 was

subject to a centripetal acceleration due to
earth’s gravity of magnitude

22

2

4 m
m

m

RV
a

R T

π
= = (8.3)

where V is the speed of the moon related to the

time period T  by the relation 2 /mV R Tπ= . The

time period T is about 27.3 days and R
m
 was

already known then to be about 3.84 × 108m.  If
we substitute these numbers in Eq. (8.3), we
get a value of a

m
 much smaller than the value of

acceleration due to gravity g on the surface of
the earth, arising also due to earth’s gravitational
attraction.

Johannes Kepler
(1571–1630)  was a
scientist of German
origin. He formulated
the three laws of
planetary motion based
on the painstaking
observations of Tycho

Brahe and coworkers. Kepler himself was an
assistant to Brahe and it took him sixteen long
years to arrive at the three planetary laws. He
is also known as the founder of geometrical
optics, being the first to describe what happens
to light after it enters a telescope.

* Refer to information given in the Box on Page 182
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Central Forces

We know the time rate of change of the angular momentum of a single particle about the origin
is

d

dt
= ×

l
r F

The angular momentum of the particle is conserved, if the torque = ×r Fττττ  due to the

force F on it vanishes. This happens either when F is zero or when F is along r. We are

interested in forces which satisfy the latter condition. Central forces satisfy this condition.

A ‘central’ force is always directed towards or away from a fixed point, i.e., along the position
vector of the point of application of the force with respect to the fixed point. (See Figure below.)
Further, the magnitude of a central force F depends on r, the distance of the point of application
of the force from the fixed point; F = F(r).
In the motion under a central force the angular momentum is always conserved. Two important

results follow from this:
(1) The motion of a particle under the central force is always confined to a plane.
(2) The position vector of the particle with respect to the centre of the force (i.e. the fixed point)

has a constant areal velocity. In other words the position vector sweeps out equal areas in
equal times as the particle moves under the influence of the central force.

Try to prove both these results. You may need to know that the areal velocity is given by :
dA/dt = ½ r v sin α.

An immediate application of the above discussion can be made to the motion of a planet
under the gravitational force of the sun. For convenience the sun may be taken to be so heavy
that it is at rest. The gravitational force of the sun on the planet is directed towards the sun.
This force also satisfies the requirement F = F(r), since F = G m

1
m

2
/r2 where m

1
 and m

2
 are

respectively the masses of the planet and the sun and G is the universal constant of gravitation.
The two results (1) and (2) described above, therefore, apply to the motion of the planet. In fact,
the result (2) is the well-known second law of Kepler.

Tr is the trejectory of the particle under the central force. At a position P, the force is directed

along OP, O is the centre of the force taken as the origin. In time ∆t, the particle moves from P to P′,
arc PP′ = ∆s = v ∆t. The tangent PQ  at P to the trajectory gives the direction of the velocity at P. The

area swept in ∆t is the area of sector POP′ ( )sinr α≈ PP′/2 = (r v sin a) ∆t/2.)
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

This clearly shows that the force due to
earth’s gravity decreases with distance.  If one
assumes that the gravitational force due to the
earth decreases in proportion to the inverse
square of the distance from the centre of the

earth, we will have a
m
 α 2

mR ; g α 2
ER  and we get

2

2

m

m E

Rg

a R
=  3600 (8.4)

in agreement with a value of g 9.8  m s-2 and

the value of a
m
 from Eq. (8.3).  These observations

led Newton to propose the following Universal Law
of Gravitation :
Every body in the universe attracts every other
body with a force which is directly proportional
to the product of their masses and inversely
proportional to the square of the distance
between them.

The quotation is essentially from Newton’s
famous treatise  called ‘Mathematical Principles
of Natural Philosophy’ (Principia for short).

Stated Mathematically, Newton’s gravitation
law reads : The force F on a point mass m

2
 due

to another point mass m
1
 has the magnitude

1 2
2

| |
m m

G
r

=F (8.5)

Equation (8.5) can be expressed in vector form as

( ) 1 2 1 2
2 2

– –
m m m m

G G
r r

= =F r r

   
1 2

3
–

m m
G= r

r

where G is the universal gravitational constant,

r  is the unit vector from m
1
 to m

2
 and r = r

2
 – r

1

as shown in Fig. 8.3.

The  gravitational force is attractive, i.e., the

force F is along – r. The force on point mass m
1

due to m
2
 is of course – F by Newton’s third law.

Thus, the gravitational force F
12

 on the body 1

due to 2 and F
21

 on the body 2 due to 1 are related

as F
12

 = – F
21

.

Before we can apply Eq. (8.5) to objects under

consideration, we have to be careful since the

law refers to point masses whereas we deal with

extended objects which have finite size. If we have

a collection of point masses, the force on any

one of them is the vector sum of the gravitational

forces exerted by the other point masses as

shown in Fig 8.4.

Fig. 8.4 Gravitational force on point mass m
1
 is the

vector sum of the gravitational forces exerted

by m
2
, m

3
 and m

4
.

The total force on m
1
 is

2 1
1 2

21

Gm m

r
=F  3 1

21 2
31

Gm m

r
+r  

 4 1
31 412

41

Gm m

r
+r r

Example 8.2  Three equal masses of m kg
each are fixed at the vertices of an
equilateral triangle ABC.
(a) What is the force acting on a mass 2m

placed at the centroid G of the triangle?
(b) What is the force if the mass at the
vertex A is doubled ?
      Take AG = BG = CG = 1 m (see Fig. 8.5)

Answer  (a) The angle between GC and the

positive x-axis is 30° and so is the angle between

GB and the negative x-axis. The individual forces

in vector notation are

Fig. 8.3 Gravitational force on m
1
 due to m

2
 is along

r where the vector r is (r
2
– r

1
).

O
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(b) Now if the mass at vertex A is doubled
then



For the gravitational force between an extended

object (like the earth) and a point mass, Eq. (8.5) is not

directly applicable. Each point mass in the extended

object will exert a force on the given point mass and

these force will not all be in the same direction. We

have to add up these forces vectorially  for all the point

masses in the extended object to get the total force.

This is easily done using calculus. For two special

cases, a  simple law results when you do that :

(1) The force of attraction between a hollow
spherical shell of uniform density and a

point mass situated outside is just as if

the entire mass of the shell is
concentrated at the centre of the shell.

Qualitatively this can be understood as

follows: Gravitational forces caused by the

various regions of the shell have components

along the line joining the point mass to the

centre as well as along a direction

prependicular to this line. The components

prependicular to this line cancel out when

summing over all regions of the shell leaving

only a resultant force along the line joining

the point to the centre. The magnitude of

this force works out to be as stated above.

Newton’s Principia

Kepler had formulated his third law by 1619. The announcement of the underlying universal law of
gravitation came about seventy years later with the publication in 1687 of Newton’s masterpiece
Philosophiae Naturalis Principia Mathematica, often simply called the Principia.

  Around 1685, Edmund Halley (after whom the famous Halley’s comet is named), came to visit
Newton at Cambridge and asked him about the nature of the trajectory of a body moving under the
influence of an inverse square law. Without hesitation Newton replied that it had to be an ellipse,
and further that he had worked it out long ago around 1665 when he was forced to retire to his farm
house from Cambridge on account of a plague outbreak. Unfortunately, Newton had lost his papers.
Halley prevailed upon Newton to produce his work in book form and agreed to bear the cost of
publication. Newton accomplished this feat in eighteen months of superhuman effort. The Principia
is a singular scientific masterpiece and in the words of Lagrange it is “the greatest production of the
human mind.” The Indian born astrophysicist and Nobel laureate S. Chandrasekhar spent ten years
writing a treatise on the Principia. His book, Newton’s Principia for the Common Reader brings
into sharp focus the beauty, clarity and breath taking economy of Newton’s methods.

Fig. 8.5 Three equal masses are placed at the three

vertices of the ∆ ABC. A mass 2m is placed

at the centroid G.

( )
GA

2 ˆ
1

Gm m
=F j

( ) ( )GB

2 ˆ ˆcos 30 sin 30
1

Gm m ο ο= − −F  i j 

( ) ( )GC

2 ˆ ˆcos 30 sin 30
1

Gm m ο ο= + −F  i j 

From the principle of superposition and the law
of vector addition, the resultant gravitational
force FR on (2m) is

 FR  =  FGA + FGB + FGC

 ( )οο−−+= 30 sinˆ30 cosˆ2  ̂2   22
R  j ij F GmGm

              ( ) 030 sinˆ30 cosˆ2 2 =−+ οο  j i Gm

Alternatively, one expects on the basis of
symmetry that the resultant force ought to be
zero.
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